Novel Pseudotaxis Mechanisms Improve Migration of Straight-Swimming Bacterial Mutants Through a Porous Environment
نویسندگان
چکیده
UNLABELLED Bacterial locomotion driven by flagella is given directionality by the chemotaxis signal transduction network. In the classic plate assays of migration in porous motility agar, efficient motility is compromised in chemotaxis mutants of diverse bacteria. Nonchemotactic mutants become trapped within the agar matrix. Suppressor mutations that prevent this entanglement but do not restore chemotaxis, a phenomenon designated pseudotaxis, were first reported to arise for Escherichia coli. In this study, novel mechanisms of pseudotaxis have been identified for the plant-pathogenic alphaproteobacterium Agrobacterium tumefaciens. Mutants with chemotaxis mutation suppressor (cms) mutations that impart enhanced migration in motility agar compared to that of their straight-swimming, nonchemotactic parent were isolated. We find that pseudotaxis in A. tumefaciens occurs most commonly via mutations in the D1 domain of the flagellar hook protein, FlgE, but it can also be found less frequently to be due to mutations in the hook length regulator, FliK, or in the motor protein, MotA. Single-cell-tracking studies of cms mutants in bulk medium clearly reveal frequent changes in the direction of swimming, similar to the swimming of strains that are proficient for chemotaxis, but independent of a sensory mechanism. Our results suggest that the tumbling process can be tuned through mutation and evolution to optimize migration through complex, porous environments. IMPORTANCE Chemotaxis sensory networks control direct bacterial motility by modulating flagellar rotary motion, alternating cellular movement between runs and tumbles. The straight-swimming phenotype of chemotaxis-deficient cells yields nonexpanding colonies in motility agar. Enhanced, chemotaxis-independent spreading, dubbed pseudotaxis, has been observed in Escherichia coli mutants. We have identified novel pseudotaxis mutations in Agrobacterium tumefaciens that alter the flagellar hook structure or motor, leading to randomly occurring reorientations observed in single-cell tracking studies in bulk medium. These directional changes allow the cells to migrate more efficiently than the parent strain through the agar matrix, independently of the chemotaxis process. These findings reveal that tumbling can be tuned for effective navigation in complex porous environments, analogous to the natural habitats for many bacteria, and provide evidence for the strong selective pressure exerted by the external environment on the basal pattern of motility, even in the absence of chemotaxis.
منابع مشابه
Environment determines evolutionary trajectory in a constrained phenotypic space
Constraints on phenotypic variation limit the capacity of organisms to adapt to the multiple selection pressures encountered in natural environments. To better understand evolutionary dynamics in this context, we select Escherichia coli for faster migration through a porous environment, a process which depends on both motility and growth. We find that a trade-off between swimming speed and grow...
متن کاملSurvey of bacterial contamination of environment of swimming pools in Yazd city, in 2013
Background: Infections are readily transmitted as a result of bacterial contamination of swimming pools. Therefore, hygiene and preventing the contamination of swimming pools is of particular importance. The objective of this study was to determine the amount of bacterial contamination in indoor pools of Yazd in 2013. Methods: In this descriptive and analytical study, all indoor swimming pools ...
متن کاملRandom walk calculations for bacterial migration in porous media.
Bacterial migration is important in understanding many practical problems ranging from disease pathogenesis to the bioremediation of hazardous waste in the environment. Our laboratory has been successful in quantifying bacterial migration in fluid media through experiment and the use of population balance equations and cellular level simulations that incorporate parameters based on a fundamenta...
متن کاملMotility and chemotaxis in Agrobacterium tumefaciens surface attachment and biofilm formation.
Bacterial motility mechanisms, including swimming, swarming, and twitching, are known to have important roles in biofilm formation, including colonization and the subsequent expansion into mature structured surface communities. Directed motility requires chemotaxis functions that are conserved among many bacterial species. The biofilm-forming plant pathogen Agrobacterium tumefaciens drives swim...
متن کاملA Discrete Singular Convolution Method for the Seepage Analysis in Porous Media with Irregular Geometry
A novel discrete singular convolution (DSC) formulation is presented for the seepage analysis in irregular geometric porous media. The DSC is a new promising numerical approach which has been recently applied to solve several engineering problems. For a medium with regular geometry, realizing of the DSC for the seepage analysis is straight forward. But DSC implementation for a medium with ir...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2015